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Note on the Impedance of a Wire Grid Parallel to a

Homogeneous Interface

JEFFREY L. YOUNG AND JAMES R. WAIT, FELLOW,IEEE

,4/Mtracf — We provide new numerical data for the correction factor

which is used to calculate the impedance of a planar wire grid parallel to

the interface between two dielectric half -spaces. Comparisons are made

with earlier investigations which clarify, extend, and supersede previous

computations. Here we show more clearly the significant influence of the

interface on the equivalent grid impedance.

I. INTRODUCTION

A wire grid over a half-space is analogous to a transmission

line with a shunt impedance. This shunt impedance consists of a

logarithmic term modified by a correction factor, A. Depending

on the value of h, the height of the grid above the interface, and

d, the interwire spacing, this term may have a significant contri-

bution to the total shunt impedance.

Previous results [1], [2] give only limited numerical data for A.

We have found that these results have a few computational and

drafting errors. We have reviewed the results in [1] and [2] and

present here some graphs that illustrate important features not

demonstrated in the earlier papers.

II. FORMULATION

With respect to a Cartesian coordinate system, the wire grid is

contained in the plane x = h and is parallel to a plane interface

at x = O. The grid is composed of an array of infinite wires

parallel to the z axis and spaced a distance d between centers.

The wires are taken to be of circular cross section and the

diameter, 2a, is assumed to be small compared to d. The media

in both half-spaces are homogeneous and lossless with permittiv-

ity c1 for x >0 and permittivity C2 for x K O. The magnetic

permeability is assumed to be the free-space value, p., every-

where. A plane wave whose electric field is parallel to the z axis

impinges on the grid with an incident angle of 00 as indicated in

Fig. 1. Under the constraints of the thin wire approximation, the
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Fig. 1 The wire gnd parallel to a half-space.

currents on each wire are assumed to be axially directed; from

this we require that ti&a <<1.

From previous analysis [2] it shown for this case that the
equivalent shunt impedance, Zg, is given by

‘g=*(]nA+Al+z’”d(1)

Here ZW is the axiaf impedance of the wire and A is the
correction factor. The axial impedance can be expressed in terms

of the modified Bessel functions as follows [3]:

(2)

where

and

(4)

Also from [2], the correction term, A, is shown to be

[

1 + RB, exp
[

–4n-lhld-1 (m+ lllsindo)~– D;

A=; ~
]

~=1 {(m+ D1sinOo)2-D~

l+R ~,exp
[

–4nllrld-1 (m – Dl sin(ro)2– D?

+ ! — 1; (5)
((m - D, sinOo)2- D?

where

and R.. is obtained by replacing m with – m. We also have

made use of the normalized dimensions Dl and D,, where

D1 = d/A1 and D2 = d/A2, Al and Al being the wavel&gths in

the respective half-spaces. Here we should note that D1 =
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Fig. 2. The correction factor, A, as a function of the distance of the grid to

the perfectly condrrctmg plane for .90 = O aud different values of DI.
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Fig. 3. The correction factor, A, as a function of the distance of the gnd to

the perfectly conducting plane for 00 = 45° and different values of DI.

T ru Clpo d/2r and D? = u C21.L0d/2T. The shunt impedance of

the grid when placed below the interface is obtained by inter-
changing the subscripts 1 and 2 in (5) and (6). For later conve-
nience, we define the relative refractive index, N, by the relation
N = ~ = Al /il and the normalized heightt H? bY the rela-
tion H = h /A1 for both positive and negative h.

Before investigating the numerical characteristics of A, we will

look at two limiting cases. We will denote by W and A-~ the
value of the correction factor when h ~ + cc, respectively. When

190= O, we find from (5) that

——‘“=%%~
and

(7)

(8)

Letting D; <<1 and ( ND1 )4 <<1, we find that the difference of

(7) from (8) is well approximated by

Am –&~ =().601 ~~(1– N2) (9)

which is consistent with a similar formula given in [2].
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Fig. 4 The correction factor, A, as a function of the distance of the grid to

the dielectric half-space for 80 = O. N = 1.57, and different values of D,.

o.7-

0.6.

0305 . . .. B. . ..*. ..D . ..o. ..a.. .a . ..=...

h%,

q o.4- i

o.3-

0.2

k

=+ ’4....

.E>... e.. .e. . . .,3 . ..*....*. .. 0...0.
0.1

0
–1.0 -0.5 0 0.5 1

H

Fig. 5. The correction factor, A, as a function of the distance of the grid to

the dielectric half-space for 00 = 45° N = 1..57, and different values of DI.
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Fig 6. The correction factor, A, as a function of the distance of the grid to

the dielectric half-space for f+ = O, N = I,rl .57, and different values of DI

Although the above equations are completely general for all

values of D1, we will in subsequent computations restrict the
wdue of D1 such that the relations D1 < (1/(1+ sin 1%1) and

D1 < (1/N(l + sin 16j1) are satisfied. That is, we will not allow
grating lobes to occur for all values of d and h.



1138 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 7, JULY 1989

III. NUMERfCAL RESULTS

Letting the lower half-space be perfectly conducting, the cor-

rection fact, A, is plotted in Figs. 2 and 3 as a function of H for

various values of Dl when 610= O and 45”, respectively; the
results are in general agreement with those sketched in an earlier

study [1]. As expected, the values of A for H-+ m approach those

results furnished by MacFarlane [4] where he assumed the grid

was located in free space.

Similar results are shown in Figs. 4 and 5 when N= 1.57. Fig.

6 shows the correction factor when region 1 is the denser medium

(i.e., N= 1/1.57) and 60= O. The general shapes of the curves

shown in Figs. 4, 5, and 6 are predicted by (9), and the values of

A for H ~ cc approach those of MacFarlane. The numerical data

in Fig. 6 supersede and extend an earlier investigation [2].

IV. CONCLUDING REMArucs

We have extended and updated various results for the correc-

tion term used in computing the impedance of a wire grid parallel

to a dielectric interface. We stress that the results herein are

restricted to the case where the electric field is always parallel to

the grid’s wires.
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Analysis of Wide Transverse Inductive Metal Strips

in a Rectangular Waveguide

BRIGHT H. CHU AND KAI CHANG, SENIOR MEMBER, IEEE

,4Mracf — An analysis based on the variational method and the moment

method has been developed to calculate the discontinuity susceptance due

to one or more inductive strips in a rectangular wavegnide. The strips can

have wide widths and be located unsymmetrically on the transverse plane

of the waveguide. Tbe current distribution on the strips has been deter-

mined by solving a set of linear equations. The theoretical results agree

closely with experiments.

I. INTRODUCTION

Waveguide inductive strip discontinuities have many applica-

tions in waveguide filters and matching networks. Many analyses

have been reported for single and multiple inductive strips in

waveguide [1]– [7]. Marcuvitz provided closed-form formulas for

the reactance of a transverse inductive strip with a broad range of

widths [1]. The solution is only valid for a centered strip and only

one strip can be considered. For a narrow strip, a solution based
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on the variational method can be found in Collin [2]. The strip

location is not limited to the center of the waveguide. Chang and

Khan [3], [4] reported an analysis for a two- and a three-strip

discontinuity using the variational method. The current density

ratios between the strips have also been determined. The analysis

is limited to narrow strips since a constant current distribution is

assumed on each strip. Furthermore, as the number of strips

increases, the analysis becomes very complicated and a large

number of nonlinear equations for current ratios are difficult to

solve. Lewin reported a method of solving a general unsymmetri-

cal multiple-strip geometry by using a singular-integral equation

over a multiple interval [5], [6]. The method was based on the

singular-integral equation approach which had previously been

applied to a symmetrical double inductive aperture [7]. The

analysis is quite generaf but no numerical results were reported.

The moment method has recently been used for the analysis of

a probe-excited waveguide [8] and a single inductive metaf post

[9]. Analyses for inductive posts and diaphragms have also been

reported [10], [11].

This paper reports an analysis based on variational and mo-

ment methods to calculate the discontinuity susceptance due to

both a single strip and multiple strips in waveguide. The strips

are located unsymmetrically on the transverse plane of a wave-

guide and the widths of the strips can be large. The current

distribution on each strip is approximated by pulse expansion

functions. The moment method is first used to determine the

amplitudes of these expansion functions by solving an integral

equation. Once the current distribution is determined, the varia-

tional method is used to calculate the discontinuity susceptance.

Analyses for both single and multiple strips are given. Theoretical
results have been compared with experiments for single wide
centered strips, a single wide off-centered strip, a two-strip obsta-

cle, and a three-strip discontinuity. The agreement is very good.

II. ANALYSIS OF A SINGLE WIDE STRIP

It is assumed that the transverse metaf strip is located at z = O,

as shown in Fig. 1. The strip is assumed to be infinitesimally thin

and made of perfect conductor. By the requirement that the

tangential E field vanish on the perfectly conducting strip sur-

face S, we have [2]

where .T(x’) is the current distribution on the strip, a is the width

of the rectangular waveguide, and the integration is performed on

the strip surface S. The propagation constant r. is defined as

To solve the unknown current J(x), it can be expressed in

terms of pulse expansion functions as

J(x) = $ Iqf(x,) = f q[u(x-x,)-q-xq+l)] (2)

~=1 ~=1

where N is the total number of segments for the pulse expansion

function, U(x) is the step function, and 1~ is the amplitude. The

index q indicates the q th segment along the strip. Equation (1)
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