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Note on the Impedance of a Wire Grid Parallel to a
Homogeneous Interface

JEFFREY L. YOUNG anND JAMES R. WAIT, FELLOW, IEEE

Abstract —We provide new numerical data for the correction factor
which is used to calculate the impedance of a planar wire grid parallel to
the interface between two dielectric half-spaces. Comparisons are made
with earlier investigations which clarify, extend, and supersede previous
computations. Here we show more clearly the significant influence of the
interface on the equivalent grid impedance.

I. INTRODUCTION

A wire grid over a half-space is analogous to a transmission
line with a shunt impedance. This shunt impedance consists of a
logarithmic term modified by a correction factor, A. Depending
on the value of h, the height of the grid above the interface, and
d, the interwire spacing, this term may have a significant contri-
bution to the total shunt impedance.

Previous results {1], [2] give only limited numerical data for A,
We have found that these results have a few computational and
drafting errors. We have reviewed the results in [1] and [2] and
present here some graphs that illustrate important features not
demonstrated in the earlier papers.

II. FORMULATION

With respect to a Cartesian coordinate system, the wire grid is
contained in the plane x =4 and is parallel to a plane interface
at x=0. The grid is composed of an array of infinite wires
parallel to the z axis and spaced a distance d between centers.
The wires are taken to be of circular cross section and the
diameter, 24, is assumed to be small compared to d. The media
in both half-spaces are homogeneous and lossless with permittiv-
ity ¢ for x>0 and permittivity €, for x <0. The magnetic
permeability is assumed to be the free-space value, p,, every-
where. A plane wave whose electric field is parallel to the z axis
impinges on the grid with an incident angle of 8, as indicated in
Fig. 1. Under the constraints of the thin wire approximation, the
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Fig. 1 The wire grid parallel to a half-space.

currents on each wire are assumed to be axially directed; from
this we require that wy/pe; @ <1.

From previous analysis [2] it shown for this case that the
equivalent shunt impedance, Z , is given by

iwpgd
7 = Ho(

8 27 1)

Here Z, is the axial impedance of the wire and A is the
correction factor. The axial impedance can be expressed in terms
of the modified Bessel functions as follows [3]:
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where

Yo =i, (o, + iwe,)

1O,
PV (o, Fre,0)

Also from [2], the correction term, A, is shown to be

(3)

and

(4)
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where
m+ D, siny)* — D —/(m + D, sinf,)’ — D?
o U Dysind)*— DF —(m+ Dysiny)° - D; ©

" y(m + D, siné,)* — D} +\/(m + D, sin6,)’>— D2

and R_, is obtained by replacing m with —m. We also have
made use of the normalized dimensions D, and D,, where
Dy =d/\ and D,=d/X,, A, and A, being the wavelengths in
the respective half-spaces. Here we should note that D)=
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Fig. 2. The correction factor, A, as a function of the distance of the gnd to
the perfectly conducting plane for §, = 0 and different values of D;.
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Fig. 3. The correction factor, A, as a function of the distance of the gnd to

the perfectly conducting plane for 8, = 45° and different values of D;.

/e g d/2m and D, = w/e,pod /27, The shunt impedance of
the grid when placed below the interface is obtained by inter-
changing the subscripts 1 and 2 in (5) and (6). For later conve-
nience, we define the relative refractive index, N, by the relation
N=y/¢, /¢ =\ /A, and the normalized height, H, by the rela-
tion H=h /), for both positive and negative k.

Before investigating the numerical characteristics of A, we will
look at two limiting cases. We will denote by A* and A~ the
value of the correction factor when s — + oo, respectively. When
6, = 0, we find from (5) that

il 1 1
et s

2
m*— Di

and
(8)

Letting D} <1 and (ND;)* <1, we find that the difference of
(7) from (8) is well approximated by
A° — A™* = 0.601D2(1— N?) (9)

which is consistent with a similar formula given in [2].
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Fig. 4 The correction factor, A, as a function of the distance of the grid to
the dielectric half-space for 8, = 0, N =1.57, and different values of D,.
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Fig. 5. The correction factor, A, as a function of the distance of the grid to
the dielectric half-space for 6, = 45° N =1.57, and different values of D;.
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Fig 6. The correction factor, A, as a function of the distance of the grid to
the dielectric half-space for 6, — 0, N =1,/1.57, and different values of D;

Although the above equations are completely general for all
values of D,, we will in subsequent computations restrict the
value of D, such that the relations D; < (1/(1+sin|0y)) and
D, < (1/N(l+sin|f,)) are satisfied. That is, we will not allow
grating lobes to occur for all values of d and h.
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III. NUMERICAL RESULTS

Letting the lower half-space be perfectly conducting, the cor-
rection fact, A, is plotted in Figs. 2 and 3 as a function of H for
various values of D, when 6, =0 and 45°, respectively; the
results are in general agreement with those sketched in an earlier
study [1]. As expected, the values of A for H — oo approach those
results furnished by MacFarlane [4] where he assumed the grid
was located in free space.

Similar results are shown in Figs. 4 and 5 when N =1.57. Fig.
6 shows the correction factor when region 1 is the denser medium
(i.e., N=1/1.57) and 6, =0. The general shapes of the curves
shown in Figs. 4, 5, and 6 are predicted by (9), and the values of
A for H - w0 approach those of MacFarlane. The numerical data
in Fig. 6 supersede and extend an earlier investigation [2].

IV. CONCLUDING REMARKS

We have extended and updated various results for the correc-
tion term used in computing the impedance of a wire grid parallel
to a dielectric interface. We stress that the results herein are
restricted to the case where the electric field is always parallel to
the grid’s wires.
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Analysis of Wide Transverse Inductive Metal Strips
in a Rectangular Waveguide

BRIGHT H. CHU anp KAI CHANG, SENIOR MEMBER, IEEE

Abstract — An analysis based on the variational method and the moment
method has been developed to calculate the discontinuity susceptance due
to one or more inductive strips in a rectangular waveguide. The strips can
have wide widths and be located unsymmetrically on the transverse plane
of the waveguide. The current distribution on the strips has been deter-
mined by solving a set of linear equations. The theoretical results agree
closely with experiments.

I. INTRODUCTION

Waveguide inductive strip discontinuities have many applica-

tions in waveguide filters and matching networks. Many analyses

have been reported for single and multiple inductive strips in
waveguide [1}-[7]. Marcuvitz provided closed-form formulas for
the reactance of a transverse inductive strip with a broad range of
widths [1]. The solution is only valid for a centered strip and only
one strip can be considered. For a narrow strip, a solution based
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on the variational method can be found in Collin [2]. The strip
location is not limited to the center of the waveguide. Chang and
Khan [3], [4] reported an analysis for a two- and a three-strip
discontinuity using the variational method. The current density
ratios between the strips have also been determined. The analysis
is limited to narrow strips since a constant current distribution is
assumed on each strip. Furthermore, as the number of strips
increases, the analysis becomes very complicated and a large
number of nonlinear equations for current ratios are difficult to
solve. Lewin reported a method of solving a general unsymmetri-
cal multiple-strip geometry by using a singular-integral equation
over a multiple interval [5], [6]. The method was based on the
singular-integral equation approach which had previously been
applied to a symmetrical double inductive aperture [7]. The
analysis is quite general but no numerical results were reported.

The moment method has recently been used for the analysis of
a probe-excited waveguide [8] and a single inductive metal post
[9]. Analyses for inductive posts and diaphragms have also been
reported [10], [11].

This paper reports an analysis based on variational and mo-
ment methods to calculate the discontinuity susceptance due to
both a single strip and multiplé strips in waveguide. The strips
are located unsymmetrically on the transverse plane of a wave-
guide and the widths of the strips can be large. The current
distribution on each strip is approximated by pulse expansion
functions. The moment method is first used to determine the
amplitudes of these expansion functions by solving an integral
equation. Once the current distribution is determined, the varia-
tional method is used to calculate the discontinuity susceptance.
Analyses for both single and multiple strips are given. Theoretical
results have been compared with experiments for single wide
centered strips, a single wide off-centered strip, a two-strip obsta-
cle, and a three-strip discontinuity. The agreement is very good.

II. ANALYSIS OF A SINGLE WIDE STRIP

It is assumed that the transverse metal strip is located at z = 0,
as shown in Fig. 1. The strip is assumed to be infinitesimally thin
and made of perfect conductor. By the requirement that the
tangential £ field vanish on the perfectly conducting strip sur-
face S, we have [2]

x/
/ /e 1
1~F a ) ; J(x)dx'=0 (1)

X J@pg i 1 nox ,  nw

where J(x’) is the current distribution on the strip, a is the width
of the rectangular waveguide, and the integration is performed on
the strip surface S. The propagation constant I, is defined as

7 2 2
I‘)I=;Vn~*(2a/AO) :

To solve the unknown current J(x), it can be expressed in
terms of pulse expansion functions as

I3 = B4y f(x) = X4 [U(x =) = U(x=x,)] ()

where N is the total number of segments for the pulse expansion
function, U(x) is the step function, and 7, is the amplitude. The
index ¢ indicates the gth segment along the strip. Equation (1)
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